Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109455, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38550987

RESUMO

Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.

2.
Proc Natl Acad Sci U S A ; 121(10): e2314017121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408231

RESUMO

Motion is the basis of nearly all animal behavior. Evolution has led to some extraordinary specializations of propulsion mechanisms among invertebrates, including the mandibles of the dracula ant and the claw of the pistol shrimp. In contrast, vertebrate skeletal movement is considered to be limited by the speed of muscle, saturating around 250 Hz. Here, we describe the unique propulsion mechanism by which Danionella cerebrum, a miniature cyprinid fish of only 12 mm length, produces high amplitude sounds exceeding 140 dB (re. 1 µPa, at a distance of one body length). Using a combination of high-speed video, micro-computed tomography (micro-CT), RNA profiling, and finite difference simulations, we found that D. cerebrum employ a unique sound production mechanism that involves a drumming cartilage, a specialized rib, and a dedicated muscle adapted for low fatigue. This apparatus accelerates the drumming cartilage at over 2,000 g, shooting it at the swim bladder to generate a rapid, loud pulse. These pulses are chained together to make calls with either bilaterally alternating or unilateral muscle contractions. D. cerebrum use this remarkable mechanism for acoustic communication with conspecifics.


Assuntos
Comunicação Animal , Cyprinidae , Animais , Microtomografia por Raio-X , Som , Acústica , Cyprinidae/genética
3.
Curr Biol ; 30(20): 4009-4021.e4, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32888479

RESUMO

Social experiences greatly define subsequent social behavior. Lack of such experiences, especially during critical phases of development, can severely impede the ability to behave adequately in social contexts. To date, it is not well characterized how early-life social isolation leads to social deficits and impacts development. In many model species, it is challenging to fully control social experiences, because they depend on parental care. Moreover, complex social behaviors involve multiple sensory modalities, contexts, and actions. Hence, when studying social isolation effects, it is important to parse apart social deficits from general developmental effects, such as abnormal motor learning. Here, we characterized how social experiences during early development of zebrafish larvae modulate their social behavior at 1 week of age, when social avoidance reactions can be measured as discrete swim events. We show that raising larvae in social isolation leads to enhanced social avoidance, in terms of the distance at which larvae react to one another and the strength of swim movement they use. Specifically, larvae raised in isolation use a high-acceleration escape swim, the short latency C-start, more frequently during social interactions. These behavioral differences are absent in non-social contexts. By ablating the lateral line and presenting the fish with local water vibrations, we show that lateral line inputs are both necessary and sufficient to drive enhanced social avoidance reactions. Taken together, our results show that social experience during development is a critical factor in shaping mechanosensory avoidance reactions in larval zebrafish.


Assuntos
Aprendizagem da Esquiva/fisiologia , Reação de Fuga/fisiologia , Larva/fisiologia , Isolamento Social , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento Social , Meio Social , Peixe-Zebra/crescimento & desenvolvimento
4.
Nat Commun ; 7: 12620, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646867

RESUMO

The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cells for rapidly optimizing behaviour in local antagonistic environments.


Assuntos
Aprendizagem da Esquiva/fisiologia , Corticotrofos/metabolismo , Estresse Psicológico/metabolismo , Animais , Animais Geneticamente Modificados , Locomoção , Optogenética , Estresse Psicológico/psicologia , Peixe-Zebra
5.
J Neurophysiol ; 114(5): 2672-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26334010

RESUMO

Secondary hyperalgesia is believed to be a key feature of "central sensitization" and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400-600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


Assuntos
Córtex Cerebral/fisiopatologia , Potenciais Somatossensoriais Evocados , Hiperalgesia/fisiopatologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Adulto , Capsaicina/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Eletroencefalografia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Feminino , Humanos , Masculino , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Medição da Dor , Estimulação Física , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-25798089

RESUMO

Larval zebrafish (Danio rerio) have become favored subjects for studying the neural bases of behavior. Here, we report a highly stereotyped response of zebrafish larvae to hydrodynamic stimuli. It involves positive taxis, motion damping and sustained responsiveness to flows derived from local, non-stressful water motions. The response depends on the lateral line and has a high sensitivity to stimulus frequency and strength, sensory background and rearing conditions--also encompassing increased threshold levels of response to parallel input. The results show that zebrafish larvae can use near-field detection to locate sources of minute water motions, and offer a unique handle for analyses of hydrodynamic sensing, sensory responsiveness and arousal with accurate control of stimulus properties.


Assuntos
Comportamento Animal/fisiologia , Sistema da Linha Lateral/fisiologia , Atividade Motora/fisiologia , Peixe-Zebra/fisiologia , Animais , Larva , Água
7.
Front Behav Neurosci ; 8: 367, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368561

RESUMO

The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.

8.
Artigo em Inglês | MEDLINE | ID: mdl-23653595

RESUMO

The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs.


Assuntos
Glucocorticoides/metabolismo , Optogenética/métodos , Estimulação Luminosa/métodos , Comportamento Predatório/fisiologia , Natação/fisiologia , Animais , Animais Geneticamente Modificados , Larva , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA